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DONKEY KONG’S LEGACY
About microprocessors as model organisms and the behavioral 

politics of video games in AI

Johannes Bruder

Abstract

The article discusses forms of contamination between human and artificial intelligence in 
computational neuroscience and machine learning research. I begin with a deep dive into 
an experiment with the legacy microprocessor MOS 6502, conducted by two engineers 
working in computational neuroscience, to explain why and how machine learning algo-
rithms are increasingly employed to simulate human cognition and behavior. Through the 
strategic use of the microprocessor as “model organism” and references to biological and 
psychological lab research, the authors draw attention to speculative research in machine 
learning, where arcade video games designed in the 1980s provide test beds for artificial 
intelligences under development. I elaborate on the politics of these test beds and suggest 
alternative avenues for machine learning research to avoid that artificial intelligence merely 

reproduces settler-colonialist politics in silico.

Keywords: artificial intelligence, machine learning, model organisms, lab studies,  
algorithm studies

Introduction

Rose was one of the first researchers who I managed to engage in a longer conversation during 
my fieldwork in a British neuroscience institute in 2011. She was a very casual person, always 
chewing on a gum, an unperturbed look on her face, throwing truths around that I was not 
always prepared to hear. I had come here to observe those who study the human brain, yet 
what Rose told me is that many people in the lab I was visiting were “kind of largely outside 
the domain of understanding what the brain is doing. You’re more in the domain of under-
standing what the signal tells you as a methodologist”, she observed. “We tend to be more 
computational people”.

As baffled as I was in the beginning, my conversation with Rose raised my interest in 
computer scientists’ and engineers’ perspectives of the human brain. I was intrigued by the 
question about what happens when people, who would normally design circuits or code algo-
rithms study the human brain by their means. If microprocessors are substituted for human 
brains in experiments, if machine learning algorithms are used to simulate aspects of human 
cognition, how does that affect our understanding of cognition and intelligence? 
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This paper is a study of machine learning algorithms in practice. It differs from studies of 
algorithms at work (Kellogg, Valentine, and Christin 2020) and of algorithms as or in culture 
(Seaver 2017), in that I focus on “agents” in laboratories – experimental algorithms that learn 
to simulate aspects of human cognition and behavior to illuminate the ominous human 
capacity of intelligence, and to help researchers in building intelligent systems. These are 
experiments where the digital tries to pass as a version of the biological. This paper is hence 
more firmly embedded in traditional lab studies (Knorr Cetina 1992) than in the burgeoning 
field of algorithms studies, yet it draws on the methods of both fields to get a grip on exper-
iments that shift the boundaries between, or allow for the mutual contamination of human 
and artificial intelligence.

An experiment conducted by two computational neuroscientists is exemplary in this 
regard. The experimenters substituted a microprocessor that once powered the Nintendo 
Entertainment System (NES) and the Apple II for the human brain and ran old video games 
as example “behaviors” to analyze how the computer “thinks”. Their experiment was first 
and foremost meant and considered as epistemological critique: the authors provocatively 
ask why neuroscientists believe they could understand the human brain although the data 
analysis methods currently used in neuroscience cannot help elucidate the operations of the 
infinitely less complex MOS6502 chip? 

I analyze how the experimenters selectively draw on laboratory experiments in biology 
to legitimate their decision to substitute a legacy microprocessor for human brains in scan-
ners. Their argument supports a very specific analogy between brains and computers, which 
derives from mid-twentieth century attempts at modeling human decision-making on com-
puters and suggests that anthropologists ought to study the scripts or protocols of simulations 
to get a grip on how cognition is reconceived in between human and machine.

At closer look, Jonas and Kording’s study is not only epistemological critique; it provides 
an inroad to the use of video games as replacement laboratories in the study of cognition and 
intelligence. Jonas and Kording’s choice of 1980s Atari video games like Donkey Kong as 
“naturalistic” behaviors is of particular interest, since it exemplifies a recent trend to consider 
these as “microcosms of the real world” (Markoff 2016). Against this backdrop, it is the video 
game as virtual laboratory or test bed that determines what counts as creative and intelligent 
in humans and machines.

Brains are not chips, but …

My encounter with Rose in 2011 only marked the beginning of an extended engagement 
with computational neuroscience. I did not immediately notice how closely related the resur-
gence of artificial neural networks and changing paradigms of computational neuroscience 
were. Initially, I was too intrigued by the fact that most of the researchers I interacted with 
in neuroscience laboratories were focused on data and – as one PostDoc in a Swiss neurosci-
ence lab told me – thought of research on the brain as “an interesting application of maths”. 
Some had just transferred from the field of security engineering, others had opted to analyze 
brain imaging data although they had originally wanted to become analysts and work in 
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finance. What they all had in common was that computers were their “lab” and data were 
their research objects. They ran experiments mostly in MATLAB, carefully modeling how 
the brain processes and stores information, based on data generated by scanning peoples’ 
brains. To test the resulting models, my interlocutors ran simulations and compared their 
synthetic data with those of their volunteers’ brain activity. In those tests, their models 
turned into artificial brains and the dividing lines between the study of human brains and 
the science of artificial intelligence began to blur. 

This shift from experiments with real brains to simulations of artificial brains has accel-
erated in recent years. The lab is now more often found in data centers, and machine learn-
ing algorithms are substituted for real brains. Researchers hope to detect patterns in data of 
human brain activity, and by internalizing these patterns, learn to simulate aspects of 
human cognition and behavior. That is to say that the field has shifted, and labs have par-
tially moved online. Besides lying in brain scanners and participating in experiments con-
ducted in psychology laboratories, I spent months sifting through science blog posts, study-
ing design documents of microprocessors, and engaging with the scripts and protocols of 
1980s Atari video games.1

In 2016, I came across an experiment conducted by two computational neuroscientists, 
who used a simulation of a microprocessor as an artificial brain, to test cutting-edge data 
analysis methods used to study the brain. The experiment already made waves when the 
paper was still in the review phase, accessible only through the online repository arXiv. Eric 
Jonas and Konrad Kording had applied methods typically used to analyze brain imaging 
data to study the operations of the chip while running 1980s video games such as Donkey 
Kong and Space Invaders. Although the two researchers were curious to see if they could 
come up with new insights on how the chip brings Donkey Kong to life, the results of their 
analysis were only of secondary interest. In fact, Jonas and Kording were sure that their 
experiment would fail.

The experiment was a clever hoax and a gesture of epistemological critique: if what in the 
real neuroscience world would be a millions-of-dollars data set does not result in some insights 
about how the processor works, why do we expect that the very same techniques would work 
on the human brain? Eric Jonas had come up with the idea to analyze the chip at work with 
cutting-edge brain imaging methods when he came across the Visual6502 project, a collective 
effort of “retro-computing enthusiasts” to study, document, and preserve the microprocessor 
for generations to come (Yong 2016). Using highly detailed photographs, the Visual6502 proj-
ect had managed to produce a fully functional digital model and simulation of the chip, which 
allowed, among other things, to play 1980s video games on current computers (fig. 1).

In an interview with The Atlantic, Eric Jonas explains how shocked he was that they used 
the exact same techniques as neuroscientists who are trying to map the brain’s connectome. 
“It made me think that the analogy [between the chip and the brain] is incredibly strong” 
(Yong 2016). Nevertheless, Jonas and Kording openly admit in their paper that the brain is 
not actually similar to a processor. 

1 See Tara Mahfoud’s review of ethnographies of neuroscience practice for an overview (Mahfoud 2014).
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Neural systems are analog and biophysically complex, they operate at temporal scales vastly 
slower than this classical processor but with far greater parallelism than is available in state 
of the art processors. Typical neurons also have several orders of magnitude more inputs  
than a transistor. Moreover, the design process for the brain (evolution) is dramatically differ-
ent from that of the processor (the MOS6502 was designed by a small team of people over  
a few years). As such, we should be sceptical about generalizing from processors to the brain. 
(Jonas and Kording 2017, 14)

At the same time, the authors point towards some – rather abstract – similarities in how 
the workings of human brains and microprocessors have typically been analyzed. Anthro-
pologist Joe Dumit observed that circuit diagrams have for decades structured how neuros-
cientists and psychologists study the human brain through experiments with volunteers in 
scanners (Dumit 2016). In order to understand how the brain processes what we see, hear, 
and feel, experimenters still come up with mental tasks for their volunteers, to simulate mun-
dane brain activity while they are lying in brain scanners, waiting for their thoughts to be 
turned into the meanwhile iconic images of the brain at work. In other words, experimenters 
activate their volunteers’ brains in specific ways to understand how they work.

The experiment that undergirds Jonas and Kording’s paper tested these methods of contem-
porary neuroscience and substituted the brain of a volunteer with a legacy microprocessor 
that was primarily used to play arcade video games. Their argument in a nutshell: despite all 
the differences between microprocessors and brains, we should be able to understand what 
the MOS6502 does by means of methods developed to analyze the infinitely more complex 
human brain. 

Figure 1: A visualization of the process by which the MOS 6502  
has been optically reconstructed to generate a fully functional digital model  

of the chip (Jonas and Kording 2017).
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[W]e cannot write off the failure of the methods we used on the processor simply because  
processors are different from neural systems. ... Altogether, there seems to be little reason  
to assume that any of the methods we used should be more meaningful on brains than on the 
processor. (Jonas and Kording 2017, 14–15)

This line of thinking has a precedent. In 2002, the scientific journal Cancer Cell published 
a piece by cell biologist Yuri Lazebnik titled “Can a biologist fix a radio? What I learned 
while studying apoptosis” (Lazebnik 2002). Lazebnik elaborates on the frustration that 
takes hold whenever a whole field buys into the most recent hype around a specific target 
protein that promises to result in a miracle drug – only to abandon it altogether as soon as 
considerable doubt over the models and methods used arises. “I started to wonder whether 
anything could be done to expedite this event”, Lazebnik writes. “To abstract from peculia-
rities of biological experimental systems, I looked for a problem that would involve a reaso-
nably complex but well understood system. Eventually, I thought of the old broken transistor 
radio that my wife brought from Russia” (Lazebnik 2002, 179–180). 

The similarities between the titles of Lazebnik’s paper and that of Jonas and Kording are 
anything but coincidental. Lazebnik thought that what biology needs is an unambiguous 
language, adopted from engineering, to “change from an esoteric tool that is considered use-
less by many experimental biologists, to a basic and indispensable approach of biology” 
(Lazebnik 2002, 182). In similar ways, Jonas and Kording argue for the language and meth-
ods of data science to become central to research on the brain. That is, the necessity or sig-
nificance of the biological substrate in experiments is called into question: why conduct com-
plicated experiments with cells or human subjects if experimenting with rather simple, 
human-designed systems could make everyone’s lives much easier?

In both cases, the human-designed circuit stands in for the complex and messy organ to 
prove that scientific methods currently used must necessarily fail. The Russian transistor 
radio and the North American microprocessor, however, are not arbitrary choices—they 
“emerge from particular cultural worlds, not from some technical outside” (Seaver 2018, 
379). As model organism, the MOS 6502 invokes specific technocultural practices that can-
not be subsumed to the supposedly neutral domain of engineering but extend to the situated 
worlds of biology laboratories as well as to the cultural niche of 1980s Atari video games.2

Model organisms

“[W]e take a classical microprocessor as a model organism, and use our ability to perform 
arbitrary experiments on it to see if popular data analysis methods from neuroscience can 
elucidate the way it processes information”, Jonas and Kording (2017, 1) write. By referring 
to the MOS6502 as a model organism, they simultaneously re-engage the in many ways 
flawed brain-computer metaphor and a rich history of experimentation in biology and psy-

2 I borrow the notion of “technocultural practices” from Kavita Philip, Lily Irani, and Paul Dourish, who use 
it in the context of tactics for postcolonial computing, referring to media technologies as constituting “the very 
cultural categories by which some seek to explain them” (Philip, Irani, and Dourish 2012, 14). 
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chology, where human subjects have been substituted with non-human animals to elucidate 
specific aspects of – typically disordered – human behavior. 

Despite all the differences between human brains and microprocessors, comparing the 
MOS 6502 to model organisms in biology would seem to legitimize the experiment. Social 
scientist Nicole Nelson offers that model organisms are rarely a natural fit; “scientists them-
selves build up the case for their animal models through methodological experiments and 
arguments that bind together the animal model with the human disorder in a way that makes 
future experimental work possible and credible” (Nelson 2013, 7). Entire communities of 
researchers revolve around specific model organisms, a shared toolbox of experimental tech-
niques and a common language that helps handle the – at times overwhelming – differences 
between humans and the non-human animal. 

Jonas and Kording make a similar case for the MOS 6502 as model organism, which they 
describe as falling somewhere in between the nematode worm Caenorhabditis elegans and the 
lab mouse. The microprocessor sits at the intersection of their lab lives: whereas the mouse 
provides a fitting behavioral model, “the processor’s scale and specialization share more in 
common with C. elegans than a mouse” (Jonas and Kording 2017, 3). 

Lab mice

According to the Jackson Laboratory on Mount Desert Island in Maine, CL57BL/6J is the 
most widely used inbred strain of laboratory mice. JAX, as the laboratory is also referred to, 
has its very own “black 6” that carries the letter J as a postfix to the code that unmistakably 
identifies the laboratory mouse as a commodity or “technical thing” (Rheinberger 1997). 
C57BL/6J “is a permissive background for maximal expression of most mutations”, the web-
site states, and thus “used in a wide variety of research areas including cardiovascular biol-
ogy, developmental biology, diabetes and obesity, genetics, immunology, neurobiology, and 
sensorineural research”.3 

Despite C57BL/6J’s commodification, many science studies scholars and scientists them-
selves oppose considering lab mice as mere tools. The rodents that appear alongside amino 
acids, centrifuges, and other technical things in Hans-Jörg Rheinberger’s analysis of exper-
imental systems in biology do not lend themselves easily to standing in for the human, par-
ticularly if they are to reproduce behavior that does not come natural to mice – such as binge 
drinking, for instance. That is to say that even the genetically modified CL57BL/6J, which 
supposedly has a preference for alcohol and morphine, remains averse to consuming exten-
sive amounts of alcohol. How can binge drinking behavior in mice be “naturalized” if even 
genetically modified strains will not drink enough alcohol to exhibit blood alcohol levels 
comparable to those that humans seem to enjoy? 

Sabina Leonelli and colleagues have analyzed the use of mice as situated models in North 
American alcohol research throughout the twentieth and early twenty-first century and 

3 Please see Jackson Laboratory’s website for more detailed information: https://www.jax.org/strain/000664, 
accessed February 7, 2021. 

https://www.jax.org/strain/000664
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found that environmental factors and experimental situations have taken center stage in dis-
cussions about the validity of mice to model human drinking behavior (Leonelli et al. 2014). 
Researchers cannot resort to any “unnatural” incentives or force mice into drinking without 
tampering with the phenomenon of drinking itself. To create a situation where the mouse 
adapts human behavior, the lab and the experimental setup must constantly be reconfigured. 
“Mice and humans, mazes and drugs, genes and behaviors, practical experience and widely 
recognized findings – all these are continually and carefully set in relation to each other to 
create a space that functions as credible site for producing knowledge about human behaviour” 
(Nelson 2018, 6). 

Experimenting with C. elegans is supposedly easier, not least since its brain has meanwhile 
been digitally mapped. The nematode worm was a staple of the Human Genome Project 
(HGP) and has become a poster child of genetics research in biology. Despite being infinitely 
less complex than humans, C. elegans promised insights into certain common or even univer-
sal biological mechanisms. Differences in complexity have typically been smoothed over by 
a hypothesized common biological lineage, well-founded in the theory of evolution and for-
malized in the genetic code. Ruth Ankeny, who studied the use of worms in the HGP, cites 
a Science article from 1998, where Francis Collins – former director of the HGP – and col-
leagues argue that 

all organisms are related through a common evolutionary tree [and] the study of one organism 
can provide valuable information about others … Comparisons between genomes that are dis-
tantly related provide insight into the universality of biologic mechanisms and identify exper-
imental models for studying complex processes. (Collins, quoted in Ankeny 2007, 47)

Lab worms

Despite the fact that C. elegans is fairly atypical even compared to closely related organisms, 
it gained biological prominence because of its experimental manipulability and tractability: 
“an organism that proved experimentally straightforward to manipulate and had relatively 
basic behaviors and structures, but was not so simple as to be ‘unrepresentative’”, Ankeny 
writes (Ankeny 2007, 49). In fact, the experimental manipulability of C. elegans rests fore-
most on the ease of breeding an array of “actual material worms” – using the worm as a model 
organism therefore allows to construct what Ankeny calls a “data-summarizing descriptive 
device” (op. cit.). Thanks to its simplistic biologic make-up, it was the first multicellular 
organism with a completely sequenced genome and a known “brain”.4 Both are ideal types 
that do not exist in nature – thus “summarizing” and “descriptive” – but they provide stable 
models that permit investigating, analyzing and quantifying deviations from what is consid-

4 The C. elegans genome was initially completed in 1998 and updated roughly two decades later to include 
genetic variations and mutations (The C. elegans Sequencing Consortium 1998; Yoshimura et al. 2019).  
The wiring diagram of neural connections for female worms has been available since 1986; it was updated, 
digitized and complemented by the male wiring diagram in 2019 (Cook et al. 2019).
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ered normal or biologically sound. The genetically modified and standardized lab worm is 
hence closer to being an experimental device or machine than to an actual living organism. 

Jonas and Kording consider C. elegans as a fitting analogy for the MOS 6502 since the 
nematode worm is as different from the human as the microprocessor is from a brain. Exper-
imenting on C. elegans is considered worthwhile not because it is biologically or physically 
similar to humans, but because worms appear to be infinitely simpler to control – especially 
if they are disembodied and dematerialized in simulations. In a companion piece to the paper 
that announced the completion of a digital atlas of C. elegans brain, (neuro)biologist Douglas 
Portman contends that a detailed simulation of the worm’s nervous system will allow “gen-
erating a virtual worm that ‘lives’ inside a computer” (Portman 2019). 

In ways similar to the case of the virtual C. elegans, the virtualized MOS 6502 acts as a 
proxy for the human brain and was chosen as a model organism since “it is fully accessible 
to any and all experimental manipulations that we might want to do on it” (Jonas and Kord-
ing 2017, 3). And in ways similar to the case of the lab mouse, the experimental tasks for 
MOS6502 were chosen to mediate between behaviors that come “natural” to both, chips 
and brains. In fact, their choice of experimental task was not arbitrary – it reflects the exper-
imenters’ familiarity with certain test beds and attendant technocultural practices.5

The games they play(ed)

In their paper, Eric Jonas and Konrad Kording half-jokingly admit that most of their col-
leagues 

have at least behavioral-level experience with … classical video game systems, and many  
in our community, including some electrophysiologists and computational neuroscientists, 
have formal training in computer science, electrical engineering, computer architecture, and 
software engineering. As such, we believe that most neuroscientists may have better intuitions 
about the workings of a processor than about the workings of the brain. (Jonas and Kording 
2017, 3)

I write half-jokingly since their statement obviously represents an ironic use of field-spe-
cific language to say what many of my interlocutors in neuroscience laboratories emphasized: 
that they feel more comfortable experimenting with models and algorithms than with living 
model organisms. This sort of irony is well-known among ethnographers of computing 
cultures (Coleman 2010; Seaver 2017). It helps navigate the ambiguities of computational 
practice – such as data that are “of the world” and simultaneously “of the computer”, or test 
beds that are highly constrained, yet nevertheless pose as “microcosms of real-world pro-
blems” (Hassabis 2016). Engineers and computer scientists know very well that video games 

5 I use the notion of test bed in dialogue with Orit Halpern, Jesse Lecavalier, Nerea Calvillo, and Wolfgang 
Pietsch’s “test-bed urbanism”, which describes how tests, experiments, and demos are increasingly embedded 
in real life contexts and thus have immediate effects on our lives (Halpern et al. 2013). See also Marres and 
Stark (2020).
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do not resemble the real world; and yet, some problems and strategies coded into video games 
such as Donkey Kong (1981), Space Invaders (1978), and Montezuma’s Revenge (1984) are 
currently omniscient in artificial intelligence research and determine the problems that arti-
ficial agents are supposed to solve. 

At one of the current powerhouses of machine learning and artificial intelligence research, 
the London-based Google subsidiary DeepMind, many leading protagonists have experi-
ence in professional chess and video game design. Their very own brand of “neuroscience-in-
spired artificial intelligence” consists in augmenting commonly used machine learning 
approaches with mechanisms that are supposedly at work also in the human brain (Hassabis 
et al. 2017). To test the capacities of their agents, researchers typically resort to well-known 
games. AlphaGo, for instance, became famous for beating the reigning (human) Go world 
champion in 2016. A more recent version, Agent57, learned to master all video games orig-
inally designed for Atari computers that were powered by the MOS 6502. In these experi-
ments, the chip is not the model organism; instead, the so-called “Arcade Learning environ-
ment” is reconsidered as test bed for general artificial intelligence. That is, the video game 
is for Google DeepMind’s Agent57 what the maze is for JAX’s CL57BL/6J. 

Google DeepMind offers that video games are an excellent testing ground for machine 
learning algorithms. Their ultimate goal is not to develop systems that excel at games; rather, 
gameplay is used “as a stepping stone for developing systems that learn to excel at a broad set 
of challenges”. Video games reportedly force machine learning algorithms to develop “sophis-
ticated behavioural strategies” and the high score provides “an easy progress metri to opti-
mise against”. Indeed, Agent57 outscored the average human in each of the 57 Atari 2600 
games it learned to play. According to Google DeepMind, it “performed sufficiently well on 
a sufficiently wide range of tasks” and would thus need to be considered intelligent (Badia 
et al. 2020). 

But what form of intelligence is this? In Donkey Kong, the protagonist and Mario are kept 
in an endless loop of outwitting their opponent, throwing wooden barrels or climbing ladders 
to ultimately win (the heart of) the princess. Pitfalls and Space Invaders are similar in that 
they reduce life to surviving in adverse environments, where the protagonists have the 
opportunity to roam the virtual worlds at will and amass capital if they find ways to outwit 
their opponents and survive. Yet, analyses of the strategies that Agent57 and its peers devel-
oped revealed that they did often not satisfy this rather simple objective (Ecoffet et al. 2019; 
Lehman et al. 2020). For instance, in Montezuma’s Revenge an agent exploited a bug to 
remain in the treasure room indefinitely and collect unlimited points, instead of being moved 
to the next level and finish the game. 

The agents would often reach high scores while failing to solve the actual problem (Kra-
kovna et al. 2020). But does that mean that they failed? “If I put you in front of a computer 
game, you’ll treat the point score as the objective”, a machine learning researcher put it to 
me while we were discussing DeepMind’s experiments. “And it seems to me that this is quite 
a delicate thing, because you have every incentive to sort of lie to yourself and look for the 
loophole that lets you score high without actually finishing the game or even dying as quickly 
as possible”. Against this backdrop, it would seem that the sort of intelligence that machine 
learning algorithms exhibit when trained in the highly constrained worlds of 1980s Atari 
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video games is essentially that which video game designers expected human players to 
develop when they built cheat codes into their games. 

If DeepMind researchers admit that many agents currently excel in exploiting loopholes, 
they reify specific cultural parameters of success that define intelligence as the ability to 
amass enormous amounts of capital without necessarily solving any problems. Against this 
backdrop, singularity acquires a whole new meaning: the general intelligence that is put to 
the test is modelled after a very specific and singular understanding of what human intelli-
gence involves. It universalizes the idea of a player programmed into 1980s Atari video 
games and restricts the task of an agent to outperforming this benchmark. What the result-
ing artificial intelligence throws back at us is a radically provincial idea of human creativity, 
intelligence, and ability, courtesy of technocultural practices that derive from the domain of 
video game design in Europe, the US, and Japan. 

Old games, new worlds

In concluding, I would like to return one final time to one of the most significant statements 
within Jonas and Kording’s paper: the brain is not a chip! Throughout, the authors add qual-
ifiers to the analogy between brains and microprocessors that should please all humanists 
and appease experimental psychologists and neuroscientists. Yet, what sits at the heart of 
their statement is a re-engagement of the failed brain-computer metaphor rather than its out-
right rejection. Jonas and Kording’s choice to substitute a simulated version of the legacy 
microprocessor for the human brain in their experiment shows to what extent computing and 
cognitive science have for decades been entangled. While brains are no longer compared to 
computers, computational neuroscience has successfully implemented a language that allows 
to describe cognitive processes in the Cloud and in human brains in similar and compatible 
ways (Bruder 2019). 

Again, this thinking has a historical precedent. In the mid-1950s, social scientist and arti-
ficial intelligence forerunner Herbert Simon and his colleagues at the RAND Corporation 
tried to model and operationalize human reasoning on the JOHNNIAC computer, to inves-
tigate a phenomenon Simon dubbed “bounded rationality” (Simon 1957). It was an attempt 
at exploring the very possibility of rational decision making and experimenting on the com-
puter’s capacity to circumnavigate the limits that biology imposed. Simon and his colleagues 
therefore implemented a program called Logic Theory Machine on the JOHNNIAC. In a 
paper published in 1958, Simon and colleagues offer that they “are not comparing computer 
structures with brains, nor electrical relays with synapses. Our position is that the appropri-
ate way to describe a piece of problem-solving behavior is in terms of a program: a specifi-
cation of what the organism will do under varying environmental circumstances in terms of 
certain elementary information processes it is capable of performing” (Newell, Shaw, and 
Simon 1958, 153).

In 1958, the JOHNNIAC put a strict limit on the complexity of human behaviors that could 
be simulated – both due to its insufficient computational capacities (Dick 2015) and the 
deeply North American technocultural practices that manifested in its design. The case of 
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MOS6502 is similar. While generally a multi-purpose processor, it comes with certain “nat-
uralistic behaviors” which predetermine what “sophisticated behavioral strategies” can be. 
The player coded into 1980s video games is a liberal subject that conquers and stays, to accu-
mulate capital and outscore existing benchmarks. The fact that these agents discover loop-
holes and bugs in video games is thus hardly “surprising creativity” (Lehman et al. 2020, 
274). It proves that the agent performs sufficiently well in its task to mimic and outperform 
the player that was coded into the game. Against this backdrop, it would seem that it is not 
primarily the machine that contaminates our understanding of (human) intelligence, but that 
a very provincial understanding of the liberal subject, rooted in settler colonialist thinking 
and manifested in Arcade video games, bleeds into machine learning algorithms by way of 
the experimental task.

Nevertheless, this article is not to dismiss computational test beds, demos, and experi-
ments; instead, it is an attempt at problematizing the notion that artificial intelligence must 
necessarily restrict our understanding of intelligence. The question that I would like to ask 
is whether we can avoid over-fitting agents to test beds that privilege exploitative strategies 
and winning at all costs? In other words, could the use of microprocessors and machine learn-
ing algorithms as model organisms incite experiments where what an organism can become is 
not determined by the design of its test beds? 

A change of perspective on the laboratory and model organisms allows for very different 
mediations between the digital and the biological to come to the fore. In her analysis of mice 
as model organisms in post-genomic biology, geographer Gail Davies argues that the human-
ized mouse potentially offers a means of escape from the biological grammar of genomics. 
She observes that the “process of ‘becoming human’ opens these model organisms to biolog-
ical relations, which are not only interior but also external, remaking relations between 
experimental subjects and objects, laboratory spaces and clinical contexts” (Davies 2013, 
147). Hers is an invitation to study the humanized mouse as an object of patchwork, linking 
different fields and territories of scientific investigation and the continued exhaustion of 
nature (Tsing, Mathews, and Bubandt 2019). It may also be read as a call for attending to the 
epistemological and ontological opportunities of multispecies thinking, of thinking through, 
yet most importantly, beyond the roles that mice are relegated to in the lab: “not only are 
there many humanized mice in the world, there are also many worlds in the humanized 
mouse” (Davies 2013, 147).

In this spirit: there’s potentially more also to Donkey Kong’s legacy than the contamina-
tion of artificial intelligence through the situated technocultural practices of 1980s video 
game design. For instance, after youtuber @Hbomberguy played through Donkey Kong 64 
in a gruelling 57-hour shift to raise financial support for UK trans charity Mermaids, his live 
stream on Twitch turned into a gathering of trans rights activists and claimed Donkey Kong 
as an icon of trans rights online, literally opening up new worlds in the humanized ape. This 
little episode from contemporary digital culture arguably shows how technocultural prac-
tices can be reclaimed and reconceived – a task that machine learning could valuably sup-
port if it waved goodbye to test beds and benchmarks that reward winning at all costs.
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